The MOL solution of time dependent partial differential equations
نویسندگان
چکیده
منابع مشابه
Numerical solution of partial differential equations in time-dependent domains
Numerical solution of heat transfer and fluid flow problems in two spatial dimensions is studied. An arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations is applied to handle time-dependent geometries. A Legendre spectral method is used for the spatial discretization, and the temporal discretization is done with a semi-implicit multi-step method. The Stefan problem, a conv...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملSolution of Partial Differential Equations
We encounter partial differential equations routinely in transport phenomena. Some examples are unsteady flow in a channel, steady heat transfer to a fluid flowing through a pipe, and mass transport to a falling liquid film. Here, we shall learn a method for solving partial differential equations that complements the technique of separation of variables. We shall also learn when the method can ...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملCertified Real-time Solution of Parametrized Partial Differential Equations
Engineering analysis requires the prediction of (say, a single) selected “output” se relevant to ultimate component and system performance:∗ typical outputs include energies and forces, critical stresses or strains, flowrates or pressure drops, and various local and global measures of concentration, temperature, and flux. These outputs are functions of system parameters, or “inputs”, μ, that se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1996
ISSN: 0898-1221
DOI: 10.1016/0898-1221(96)00063-6